Gelatin Nanoparticles for Complexation and Enhanced Cellular Delivery of mRNA

< 1 min reading time Customer article 29 Sep ‘22
Download PDF (.pdf)

Keywords: gelatin; gelatin nanoparticles; mRNA; mRNA delivery; endosomal escape

Authors:

Lea Andrée, Rik Oude Egberink, Josephine Dodemont, Negar Hassani Besheli, Fang Yang, Roland Brock and Sander C. G. Leeuwenburgh

 

Abstract

Messenger RNA (mRNA) is increasingly gaining interest as a modality in vaccination and protein replacement therapy. In regenerative medicine, the mRNA-mediated expression of growth factors has shown promising results. In contrast to protein delivery, successful mRNA delivery requires a vector to induce cellular uptake and subsequent endosomal escape to reach its end destination, the ribosome. Current non-viral vectors such as lipid- or polymer-based nanoparticles have been successfully used to express mRNA-encoded proteins. However, to advance the use of mRNA in regenerative medicine, it is required to assess the compatibility of mRNA with biomaterials that are typically applied in this field. Herein, we investigated the complexation, cellular uptake and maintenance of the integrity of mRNA complexed with gelatin nanoparticles (GNPs). To this end, GNPs with positive, neutral or negative surface charge were synthesized to assess their ability to bind and transport mRNA into cells. Positively charged GNPs exhibited the highest binding affinity and transported substantial amounts of mRNA into pre-osteoblastic cells, as assessed by confocal microscopy using fluorescently labeled mRNA. Furthermore, the GNP-bound mRNA remained stable. However, no expression of mRNA-encoded protein was detected, which is likely related to insufficient endosomal escape and/or mRNA release from the GNPs. Our results indicate that gelatin-based nanomaterials interact with mRNA in a charge-dependent manner and also mediate cellular uptake. These results create the basis for the incorporation of further functionality to yield endosomal release.

Next article

RiboWorld

Latest articles

04 Dec ‘23 Customer article

Evaluation of the efficacy of cystinosin supplementation through CTNS mRNA delivery in experimental models for cystinosis

2 min reading time Read more about
04 Dec ‘23 Customer article

Cell uptake and intracellular trafficking of bioreducible poly(amidoamine) nanoparticles for efficient mRNA translation in chondrocytes

< 1 min reading time Read more about
24 Oct ‘23 Customer article

Deciphering Structural Determinants Distinguishing Active from Inactive Cell-Penetrating Peptides for Cytosolic mRNA Delivery

2 min reading time Read more about

Welcome on our new website

Please bear with us while we get everything in order.
Importantly, we are ready to receive your order, quote request or meeting request as per usual.
We look forward helping you with the highest quality mRNA.